
Towards Semi-Automatic Composition of
CBR Systems in jcolibri ? ??

Antonio A. Sánchez-Ruiz, Juan A. Recio-Garćıa,
Pedro A. González-Calero, Belén Dı́az-Agudo

Dep. Ingenieŕıa del Software e Inteligencia Artificial
Universidad Complutense de Madrid, Spain

email: {antonio.sanchez,jareciog}@fdi.ucm.es, {pedro,belend}@sip.ucm.es

Abstract. jcolibri [14, 13, 3] is a framework to build CBR systems. To define the behavior
of a new CBR system, the user has to compound reusable software components (Problem
Solving Methods or PSMs [6]). Nowadays, this process must be done by hand although
jcolibri helps the user by showing only the PSMs that are applicable at each step. In
this paper we describe some ideas to apply planning techniques to compound PSMs semi-
automatically. This way, the planner will ask the user for the required information as needed,
and the user will only have to answer to get a fully functional CBR system.

Keywords: Case-Based Reasoning, Planning, Reusable Software Components, Framework

1 Introduction

jcolibri 1 is an object-oriented framework in Java for building Case Based Reasoning (CBR)
systems. This framework tries to be a reference in the fast development of CBR systems, and
therefore, it has been designed using a flexible and scalable architecture that promotes the reuse
of components.

jcolibri is a wide spectrum framework able to support several types of CBR systems: from
simple applications based on retrieving using the nearest-neighbor approach, to knowledge-intensive
ones with complex reuse and retain tasks. It is also possible to develop textual CBR systems using
a specific and optional framework extension [12].

Framework instantiation is supported by a graphical interface that guides the configuration of
a particular CBR system. This intuitive interface alleviates the steep learning curve typical for
these type of systems, and allows CBR applications to be built even without deep programming
knowledge.

Different tasks must be done in order to build a new CBR system (define the case structure,
the similarity functions, ...) but the most important one is to define the system’s behavior. To do
this, the user must select and compound different software components (Problem Solving Methods
or PSMs) from a library of reusable software components. Nowadays, this is made manually in
jcolibri and therefore, the user must know about all the PSMs to choose the most suitable for
every occasion. Since everyone can collaborate providing their own PSMs to improve the library,
the number of available PSMs could become very large soon, and will be very hard to know all of
them.

Another problem related to the composition of PSMs are the implicit dependences among them.
Different information can be interchanged among them using a common blackboard in which they
can read and write data. In this way, there are dependences if one PSM needs some data that must
have been generated by a previous PSM.

In this paper we propose the use of planning techniques to help the user in the composition
process. The idea is to describe the PSMs and define the goal CBR system in a formal language, and
? Supported by the Spanish Committee of Education & Science (TIN2006-15140-C03-02)

?? Parcialmente financiado por la Dirección General de Universidades e Investigación de la Consejeŕıa
de Educación de la Comunidad de Madrid y por la Universidad Complutense de Madrid (Grupo de
investigación consolidado 910494)

1 Project web page http://gaia.fdi.ucm.es/grupo/projects/jcolibri/ (LGPL licenced)

Expert Update, Volume 10, Number 1, 2010 17

© BCS Specialist Group on Artificial Intelligence



Fig. 1. Building a CBR system using an interactive approach

use a planner to manage the implicit dependences and to assist the user in the composition process.
We propose to use a conversational approach in which the planner ask the user the information
required to build a valid plan, and therefore, the final CBR system.

The next two sections explain the actual process of composition in jcolibri and its limitations.
Section 4 describes the main ideas about the HTN planning and the planner that we are going
to use. Section 5 describes the necessary changes in jcolibri for automatic composition of CBR
systems and the limitations of this approach. Finally, in section 6 we try to solve these limitations
using an interactive approach in which the user and the planner can collaborate to obtain the
desired system.

2 Basic composition of CBR systems

In jcolibri , the behavior of the new CBR system is defined combining software components or
PSMs. Most approaches consider that a PSM consists of three related parts [6]. The competence
is a declarative description of what can be achieved. The operational specification describes the
reasoning process, i.e. how the method delivers the specified competence if the required knowl-
edge is provided. And the requirements describe the knowledge needed by the PSM to achieve its
competence.

The specification of a jcolibri PSM is divided into several elements: Name, Description, Con-
textInputPrecondition, Type (decomposition or execution), Parameters, Competences (tasks solved
by the PSM), Subtasks (generated by decomposition methods) and ContextOutputPostcondition.
For our discussion, the most important elements are the ContextInputPrecondition, that describes
the applicability requirements for the method, and the ContextOutputPostcondition, that repre-
sents the state after the method execution.

To create a new CBR system the user starts solving the general task CBRSystemTask that
represents a generic CBR system. To solve it, a decomposition PSM can be used, and so, the
initial task is decomposed into smaller sub-tasks. The process goes on, and these new tasks can
be decomposed into smaller subtasks recursively until we reach trivial tasks that can be solved
directly using resolution PSMs. The system is not completed until all the tasks have been solved
by a method. An example of a possible decomposition task tree is shown in the Figure 2.

PSMs interchange data using a blackboard mechanism that we call Context. At each execution
step the Context represents the actual state of the system, and contains all the shared data: query,
cases, intermediate calculated results, etc.

We want to reuse the knowledge as much as possible among different kinds of CBR applica-
tion, and therefore, we need to describe all that knowledge using a formal and domain indepen-
dent language. In jcolibri the PSMs and the Context are described in terms of CBROnto [4], a

Expert Update, Volume 10, Number 1, 2010 18

© BCS Specialist Group on Artificial Intelligence



Fig. 2. A possible decomposition task tree of the CBR cycle.

Fig. 3. Context definition subset of CBROnto

domain-independent ontology about CBR, using the OWL-DL standard formal language. Figure
3 describes the CBROnto subset for representing jcolibri contexts (this figure only shows the
is-a relations but the context object is related with the remaining concepts using several proper-
ties). The ContextInputPrecondition, ContextOutputPostcondition and Competencies are part of
the PSM description and thus they are also represented as OWL-DL descriptions in CBROnto.

jcolibri uses these elements to check if a PSM can be used to solve a task in a specific step of
the composition process, taking care of the implicit dependencies because of the context. This is
done in the following way: it uses a context instance Ci for representing the actual state of the CBR
system. Each PSM contains a context precondition concept and returns a context postcondition
instance. So, if we want to compose two PSMs PSMi and PSMi+1 our framework must compute
if the context instance Ci returned by PSMi can be classified as an instance of the precondition
concept of PSMi+1.

The complete algorithm to guide the user in the composition process is described in [15] and
follows these steps: (1) obtains the available methods; (2) looks for the current task into their
Competencies list and selects the methods that can perform the current task; (3) computes the
reasoning explained in the previous paragraph to offer only the applicable methods to the user; (4)
and finally, the user chooses manually the method that will solve the current task.

Expert Update, Volume 10, Number 1, 2010 19

© BCS Specialist Group on Artificial Intelligence



3 Limitations of this approach

In the current framework, the choice of the method related to each task must be done by hand.
The system shows the applicable methods and the user has to select the most suitable for every
occasion. To do it, the user must know about all the methods. As jcolibri has been designed as a
collaborative framework where everyone can contribute providing their own PSMs to improve the
library, the number of available PSMs could become very large, making hard to know all of them.

In addition, we have a more ambitious goal, we want to compound the PSMs to get the goal CBR
system without the mediation of the user at each step of the process. Using planning techniques
we want to be able to compound the PSMs starting from a description of the goal CBR system. As
we will see, an automatic planning approach is not very useful to develop complex CBR systems,
and it is better a semi-automatic approach in which the planner can ask the user the required
information.

However, to apply planning techniques we need more detailed descriptions of the precondi-
tions and postconditions of the methods. We could get these descriptions by adding concepts to
CBROnto, but this would make the ontology too much complex. Instead of adding complexity to
CBROnto we have chosen to describe the methods using custom-made first order logic formulas in
the formal language of SHOP2, a hierarchical planner.

4 HTN planning and JSHOP2

The goal of HTN planning [5] is to find a sequence of actions that perform some task. To accomplish
such task, the planner decomposes it into subtasks in a recursive process until achieving subtasks
so simple that they can be solved directly. This planning technique has been used successfully in
real and complex applications [19, 16, 9, 8].

SHOP2 [10] is a domain-independent HTN planner which won one of the top four awards in
the 2002 International Planning Competition. JSHOP2 is an implementation of SHOP2 in Java.
In order to work, JSHOP2 needs a description of the domain model and the planning problem. The
domain model contains the tasks that the planner can perform, different ways to accomplish each
one (operators and methods), and some axioms. The planning problem describes the initial state
and the task or tasks that must be solved. The result of the planning process is a plan, that is, a
sequence of actions that accomplish the goal tasks from the initial state.

There are two kinds of tasks: primitive and non-primitive. Primitive tasks can be performed
directly using operators, and non-primitive tasks are decomposed into simpler subtasks using meth-
ods.

Definition 1. An operator has the form (: operatorhPDA[c]) where:

– h is the primitive task that this operator perform.
– P is the logical precondition that must be satisfied to apply this operator.
– D is the list of things that will become false after the execution of the operator.
– A is the list of things that will become true after the execution of the operator.
– c (cost) optional cost.

Definition 2. A method has the form (: methodh[name1]L1T1 . . . [namen]LnTn) where:

– h is the compound task that this method can preform.
– namei is an optional name for the succeeding (LiTi) pair.
– Li is a logical precondition that must be satisfied to apply this method.
– Ti is a task list.

5 Automatic composition of CBR systems

As we have explained before, the tasks in jcolibri can be performed using two kinds of methods:
decomposition and resolution. Decomposition methods decompose the tasks into smaller subtasks
and resolution methods solve the tasks directly. When a user has to define the behavior of the new

Expert Update, Volume 10, Number 1, 2010 20

© BCS Specialist Group on Artificial Intelligence



CBR system, he begins using a method to solve the CBRSystemTask, usually by decomposition
into the subtasks CBRPreCycleTask, CBRCycleTask and CBRPostCycleTask. This process goes
on until all the tasks have been performed.

If we represent the tasks of jcolibri as tasks of JSHOP2 and the methods of jcolibri as
operators and methods of JSHOP2, the problem of building a new CBR system can be represented
as a planning problem that has as goal to perform the CBRSystemTask. The resulting plan is the
sequence of jcolibri methods (JSHOP2 methods and operators) that conform the CBR system.
Presuming that the library of methods is stable, different CBR systems can be built providing
different initial states to the planner in the description of the planning problem.

We can resume the process of representing the tasks and methods of jcolibri in JSHOP2 as
follows:

– Each task of jcolibri will be represented as a compound task of JSHOP2.
– Each decomposition method of jcolibri will be represented as a method of JSHOP2.
– To represent each execution method of jcolibri we have to do several things. Let Ec be an

execution method that performs the task Tc of jcolibri , let Ts be the compound task of
JSHOP2 related to Tc. We will create a new JSHOP2 method Ms that decomposes Ts into a
primitive task Ps, and an operator Os that solves Ps. The operator Os represents the jcolibri
method Ec, but we need an intermediate step because in jcolibri the same task can be
performed by both an execution and a decomposition method, and though in JSHOP2 each
kind of task only can be accomplished in one way.

In addition, we have to define the necessary predicate symbols to describe the precondition and
postconditions of the methods. A few examples of these predicates are:

– conectorFile ?x : x is a file that describes how to read and write cases from the persistence
media.

– activePackage ?x : the tasks and methods of the package x are available.
– oncontext ?x : x is available in the context and the methods can access to it.

Example 1. In jcolibri the task CBRCycleTask represents the CBR cycle and is performed using
a decomposition method (of the core package) called CBRMethod that decomposes it into the tasks
ObtainQueryTask, RetrieveTask, ReuseTask, ReviseTask and RetainTask. We can represent this in
JSHOP2 using the following code:

(:method (CbrCycleTask) ; Non-primitive task to solve
CBRMethod ; Optional method’s name
((activePackage core)) ; Preconditions
((ObtainQueryTask) (RetrieveTask) (ReuseTask) ; Subtasks
(ReviseTask) (RetainTask))) ; Subtasks

Example 2. In jcolibri the task ObtainCasesTask loads the case base in memory, and can be
performed using the execution method LoadCaseBaseMethod (of the core package). This method
has a file as input parameter, and such file describe how to read the cases from text files, databases,
etc. We can represent this in JSHOP2 using the following code:

(:method (ObtainCasesTask) ; Non-primitive task to solve
LoadCaseBaseMethod ; Optional method’s name
((activePackage core) (connectorFile ?cf)) ; Precondition
((!LoadCaseBaseMethodOp ?cf))) ; Subtasks

(:operator (!LoadCaseBaseMethodOp ?cf) ; Primitive tasks to solve
((connectorFile ?cf)) ; Precondition
() ; Delete list
((casebase casebase1) (oncontext casebase1))) ; Add list

As we have explained before, the planner needs a domain model and a planning problem to
work. The domain model is built using the description of all the tasks and methods. The planning

Expert Update, Volume 10, Number 1, 2010 21

© BCS Specialist Group on Artificial Intelligence



Fig. 4. JSHOP2 interface during the planning process

problem describes the initial state and the goal task. In this approach the goal task is always
CbrSystemTask, and the initial state constrains the kind of CBR system that we want to build.
The initial state contains predicate symbols that describe the active packages, the configuration
files, the value of some method parameters, the initial context, etc. Figure 4 is an example of a
decomposition process made by JSHOP2 taking as input a complete description of the initial state.

This has the disadvantage of having to describe all the required information in the initial state,
in other words, at the beginning of the process. Usually, when the user begins to develop a system,
he does not know all the information that is required to build the system from the beginning to
the end, and without that information the automatic composition is not possible.

6 Towards the semi-automatic composition

The automatic composition approach only allows to build very simple CBR system because the
user has to provide all the required information before the planner execution. In addition, if the
user forgets to introduce some information in the initial state, the planner will work as the missing
information were false due to the assumption of a closed world. It would be great if the planner
could use the current information to explore all the available possibilities, and the same planner
could ask the user other information about the initial state as necessary. This way, to build a
system, the user only has to answer some questions and the planner will develop the rest.

Kuter et all. [7] use the SHOP2 planner to automatically compose Web Services described using
the OWL-S service ontologies (there are several works around using SHOP2 to compound Web
Services [1, 20]). They present ENQUIRER, an HTN-planning algorithm designed for planning
domains in which the information about the initial state of the world may not be complete, but it
is discoverable through queries to other Web Services. Our problem is very similar and we plan to

Expert Update, Volume 10, Number 1, 2010 22

© BCS Specialist Group on Artificial Intelligence



use some ideas of this algorithm, however there is one important difference: in our problem it is a
human who is going to answer the questions.

In this approach, the input of the planner is a domain model and an incomplete-information
planning problem. Such a planning problem has a set of ground atoms that are initially known,
and a list ASK of logical atoms that are eligible to be queried during the planning process. The
ASK list represents the information that the planner can obtain although this information is not
available at the beginning of the planning process. The planner may need the same information
several times but we only want to ask each question one time, so the planner will use a ANS list
to keep all queries that have been answered.

When the planner asks a question, the user can take some time to answer, and this time can be
used by the planner to search other possibilities in the search space. When the answer is available,
the planner could decide to go back and use that information. We will use an OPEN list to keep
the information of the leaf nodes of the search tree generated during the planning process. This
information can be stored as tuples (J, T, π), where J is a (possibly) incomplete state, T is a task
list, and π is a plan.

The algorithm works as follows at each iteration:

– first check if the OPEN list is empty and in that case return failure (all the possibilities have
been explored and the is no solution).

– if there is a new answer we must update the information of each leaf node in the OPEN list
keeping the soundness of the plans. In addition we must store the pair (question, answer) in
ANS.

– Choose a tuple (J, T, π) of OPEN and remove it. If the task network T is empty we have found
a valid plan because all the tasks has been performed. Otherwise, we choose a task t of T and
we try to solve it using a method or an operator.

– If there is an action (method or operator) applicable that accomplishes the task t we apply it
and we add to OPEN the updated tuple that describes the new leaf.

– If there is no action applicable to solve t there is a precondition p that cannot be satisfied in
J . We have to check if p can be asked in the ASK list. If is not we can conclude that p is false,
but if p can be asked we must check if p has been queried before and the answer is in ANS.

– If the answer is in ANS, p must be false because p still could not be satisfied in J . If the
answer is not in ANS there are two possibilities: p is been answered at this moment or this is
the first time we try to ask it.

7 Conclusions

The literature about (semi-)automatic composition of software systems using reusable software
components shows a moderately turbulent history [18]. These last years, the boom of Semantic
Web Services has promoted the study of planning techniques to make easier the use of this poten-
tially huge library of distributed components [17, 7]. A valuable consequence of these works is the
creation of some standard semantic languages (OWL) and ontologies (OWL-S) to annotate the
Web Services.

On the other hand, to make easier the use of a framework, different kinds of supporting tools
has been developed. Usually these tools are based on documentation techniques like recipes and
cookbooks [11] or even in classic planning techniques [2].

In this paper, we propose to use modern planning techniques like hierarchical planning (HTN),
that have been tested usefully in real problems, and rich knowledge representation of the domain,
using ontologies and standard semantic languages like OWL, to support the user in the instantiation
process of the jcolibri framework.

When a user wants to create a new CBR in jcolibri , he has to define the system behavior
compounding reusable software components (PSMs). Actually, this process must be done by hand
although jcolibri helps in the process showing only the methods that are applicable at each
step. To do it, all the methods in jcolibri have preconditions and postconditions expressed in
a description language and using the concepts of CBROnto, an ontology about CBR. We have
described the required changes to apply planning techniques to this process and compound the
PSMs in a semi-automatic way. Using this approach the planner asks the user for the required

Expert Update, Volume 10, Number 1, 2010 23

© BCS Specialist Group on Artificial Intelligence



information as needed, and the user only has to answer the questions to get a fully functional
system.

In the future work we will implement and explain in detail the algorithm used to get this
conversational approach. We also have to resolve the problem related to the communication between
the planner and the user, because it is not very intuitive to the user to understand questions with
logic formulas and answer using the same formal language. Our goal is to make the process easier
for the user, and we should find an intuitive interface of communication, maybe using natural
language or graphic schemes. It is also necessary to evaluate if this approach really helps in the
development of real CBR system. This study should take into account different kinds of users and
different kinds of systems. jcolibri is an open source project available in sourceforge so we will
try to get some feedback from users.

References

1. T.-C. Au, U. Kuter, and D. S. Nau. Web service composition with volatile information. In International
Semantic Web Conference, pages 52–66, 2005.

2. M. R. Campo, J. A. D. Pace, and F. U. Trilnik. ”computer, please, tell me what i have to do...”: an
approach to agent-aided application composition. J. Syst. Softw., 74(1):55–64, 2005.

3. B. Dı́az-Agudo and P. A. González-Calero. An architecture for knowledge intensive cbr systems. In
EWCBR, pages 37–48, 2000.

4. B. Dı́az-Agudo and P. A. González-Calero. Cbronto: A task/method ontology for cbr. In FLAIRS
Conference, pages 101–105, 2002.

5. K. Erol, J. A. Hendler, and D. S. Nau. UMCP: A sound and complete procedure for hierarchical
task-network planning. In Artificial Intelligence Planning Systems, pages 249–254, 1994.

6. A. Gómez-Pérez. Knowledge sharing and reuse. In Liebowitz, editor, The handbook on Applied Expert
Systems. CRC Press, 1998.

7. U. Kuter, E. Sirin, B. Parsia, D. S. Nau, and J. A. Hendler. Information gathering during planning
for web service composition. J. Web Sem., 3(2-3):183–205, 2005.

8. B. Morisset and M. Ghallab. Learning how to combine sensory-motor modalities for a robust behavior.
In Revised Papers from the International Seminar on Advances in Plan-Based Control of Robotic
Agents,, pages 157–178, London, UK, 2002. Springer-Verlag.

9. H. Muñoz-Avila, D. W. Aha, D. S. Nau, R. Weber, L. Breslow, and F. Yaman. Sin: Integrating
case-based reasoning with task decomposition. In IJCAI, pages 999–1004, 2001.

10. D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman. Shop2: An htn
planning system. J. Artif. Intell. Res. (JAIR), 20:379–404, 2003.

11. W. Pree. Design patterns for object-oriented software development. ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, 1995.

12. J. A. Recio, B. Dı́az-Agudo, M. A. Gómez-Mart́ın, and N. Wiratunga. Extending jcolibri for textual
cbr. In ICCBR, pages 421–435, 2005.

13. J. A. Recio-Garćıa and B. Dı́az-Agudo. An introductory user guide to jcolibri 0.3. Technical report,
Dep. Sistemas Informáticos y Programación, Universidad Complutense de Madrid, Spain, 2004.

14. J. A. Recio-Garćıa, A. Sánchez-Ruiz-Granados, B. Dı́az-Agudo, and P. González-Calero. jcolibri 1.0
in a nutshell. a software tool for designing cbr systems. In M. Petridis, editor, Proccedings of the 10th
UK Workshop on Case Based Reasoning, pages 20–28, University of Greenwich, 2005. CMS Press.

15. J. A. Recio-Gaŕıa, B. Dı́az-Agudo, and P. A. González-Calero. A Distributed CBR Framework through
Semantic Web Services. In M. Bramer, F. Coenen, and T. Allen, editors, Research and Development
in Intelligent Systems XXII (Proc. of the Twenty-fith SGAI Int. Conf. on Innovative Techniques and
Applications of Artificial Intelligence, AI 2005), pages 88–101. Springer, 2005.

16. S. J. J. Smith, D. S. Nau, and T. A. Throop. Success in spades: Using ai planning techniques to win
the world championship of computer bridge. In AAAI/IAAI, pages 1079–1086, 1998.

17. B. Srivastava and J. Koehler. Web service composition — current solutions and open problems. In
ICAPS 2003, 2003.

18. S. van Splunter, N. Wijngaards, F. Brazier, and D. Richards. Automated component-based configura-
tion: Promises and fallacies. In Proceedings of the Adaptive Agents and Multi-Agent Systems workshop
at the AISB 2004 Symposium, pages 130–135, 2004.

19. D. E. Wilkins. Practical planning: extending the classical AI planning paradigm. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1988.

20. D. Wu, B. Parsia, E. Sirin, J. A. Hendler, and D. S. Nau. Automating daml-s web services composition
using shop2. In International Semantic Web Conference, pages 195–210, 2003.

Expert Update, Volume 10, Number 1, 2010 24

© BCS Specialist Group on Artificial Intelligence


