Expert Update, Volume 10, Number 2, 2010

Semiautomatic edition of behavioursin videogames

Gonzalo Flérez-Puga and Bdén Diaz-Agudo
Dep. Ingenieria dd Software e Inteligencia Artificial
Universidad Complutense de Madrid, Spain
email: gflorez@fdi.ucm.es, belend@sip.ucm.es

Abstract

The edition of intelligent behaviours in games is not an easy task. Amongst other
activities, it implies identifying the entities which must behave intelligently, and what kind
of behaviours they must show without being too predictable; designing and integrating
these new behaviours with the virtual environment, in terms of perception and actuation
over the environment, and implementing them. In this paper we present an ongoing work
using Case Based Reasoning (CBR) to design intelligent behaviours in videogames. We
have developed a graphical editor based on hierarchical state machines that includes a
CBR modul e to retrieve and reuse stored behaviours. The editor and the CBR modul e are
generic and reusable for different games. We have tested our module on a soccer
simulation environment (SoccerBots) to control the behaviour of the soccer players.

Keyword: Intelligent Agents, Behavioursin Games, State Machines, CBR

1. Introduction

The aim of almost any game is to provide some amusement to the player. This task can be performed in
several ways. In the particular case of computer games, besides a good story or spectacular graphics, the
game must be a real challenge for the player. An appropriate method for achieving thisis by providing
the opponents (and the allies) of the player with intelligence [1].

The edition of intelligent behaviours in games or smulation environments is a difficult task. Amongst
other activities, it implies identifying the entities which must behave intelligently, and what kind of
behaviours they must show (e.g. helping, aggressive, elusive), designing and implementing them,
integrating them in the game and testing.

Designing new behaviours could be greatly benefited from two features that are common in most of
nowadays videogames. First of all, modularity in behaviours. That means that complex behaviours can
be decomposed into simpler ones, that are somehow combined. Second, and related with the former,
simpler behaviours tend to recur within complex behaviours of the same game, or even in different
games of the same genre. Both features are useful to build new complex behaviours based on simple
behaviours as the building blocks that can be reused.

In the ongoing work described in this paper we are developing a graphical behaviour editor that is able
to store, index and reuse behaviours previously designed. Our editor (eCo) is generic and applicable to

" Supported by the Spanish Committee of Science & Technology (TIN2006-15140-C03-02)

© BCS Specialist Group on Artificial Intelligence

18

Expert Update, Volume 10, Number 2, 2010

BEHAVIOUR | ATTACK |
My team hasthe ball Closea tothe ball
My team doesnt has the ball Mot doses tothe ball
DEFEND] [ATTAcKER
Lined up with ball
Behind all my team-mates &nd goal
Goalkeeper
Mot lined up with
Rot behind all my team -mstes ball and gasl
Distance to goal =
true shoat distance
GOALKEEF'ER'
Ball in my side
over
center
dield
Ball not in my side | BLOCKER
o pelota en mi cam po,
o to opponent
o to opponert closerag his
clozer to ball goal
Pelota en i cam po

Figure 1. Example of HFSM

different games, aslong asit is configured by a game modd file. The underlying technologies of eCo are
Hierarchical Finite State Machines (HFSMs) [2] and Case Based Reasoning (CBR).

HFSMs are appropriate and useful tools to graphically represent behaviours in games, facilitating the
modular decomposition of complex behaviours into simpler ones and the reuse of simple behaviours.
The eCo behaviour editor provides a graphical interface which allows the user to create or modify
behaviours just by “drawing” them. On the other hand, by means of a CBR-based modul e, the user can
make approxi mate searches against a case base of previously edited behaviours. Both technol ogies work
tightly integrated. Initially, the case base is empty, so al the editing has to be done via the manua
editing (graphic) tools. Once there are enough cases in the case base, new behaviours can be constructed
by retrieving and adapting the stored ones.

There exist several tools oriented towards the edition of finite state machines. Most of them are genera
purpose state machine editors that don’t allow the use of HFSMs, nor facilitates the reusing. Regarding
game editors, most of them are only applicable to one game or game engina (e.g. Vave Hammer
Editor). Besides, the vast mgjority only allow map edition. The few that allow editing the behaviours, are
usually script based.

Finally, there exist some tools like BrainFrame and its later version, Simbionic, which are game oriented
finite state machine editors. These editors allow the specification of the set of sensors and actuators for
any game. There are two crucial differences wtih our approach. First of al, the Simbionic editor doesn’t
offer any assistance for reusng the behaviours, like the CBR approximate search engine integrated into
the eCo editor. And second, to integrate a behaviour edited with the Simbionic editor with a game, it is
mandatory to integrate the Simbionic runtime engine with the game.

In section 2 we introduce some general ideas on behaviour edition. In section 3 we present the eCo
behaviour editor, and in section 4 we show a small example of application of the editor to a ssimulation
environment: SoccerBots. Section 5 describes the CBR module integrated in the editor. Asthe editor and

© BCS Specialist Group on Artificial Intelligence

19

Expert Update, Volume 10, Number 2, 2010

4 partero - eCo v0.2 o =] 3]
Comportamiento

DAE & @ HdE e A @

Portero 10 |
Ir a la porteria
Estado: Ira la porteria Defensa 5.0 |
Movilidad (3.0
estay en mi areay
" Atague (0.0

pelota enni campa

Cubrir porteria
MACRO(

no estoy el mi dreay
no pelota ep mi campo

Pelota en rl&r
Golpear pelota
Estado: Golpear pelota

Figure 2. The eCo behaviour editor

the CBR module are reusable through different environments, in section 6 we outline the integration of
the editor with different games and simulation environments. Finally, in section 7 and 8, we present
related work, future goals and conclusions.

2. Behaviour editing in ssmulation environments

Each behaviour is typically defined by means of a set of actions or reactions performed by an entity,
usualy in relation with its environment. In a computer game or simulation, each entity gathers
information about its environment using a set of sensors, which could be compared to the senses of the
living beings. Depending on this information, the entity performs certain actions, using a set of
actuators. In general, is different for each game or simulation environment, athough there will be
similarities between games of the same genre. For instance, commonly used sensors in a first-person-
shooter (FPS) game could be the position, the health or the visibility of other entities. Regarding the
actuators, the entity can shoot, look at or go to a place, talk to other entities, among others.

There are two properties, shown by game behaviours, which have been of critical importance for the
development of the editor prototype: modularity (complex behaviours are usually composed of simpler
behaviours) and reuse (simpler behaviours tend to recur in complex behaviours).

Several suitable techniques exist for the representation of behaviours. Due to its expressive power and
simplicity, the Finite State Machines (FSMs) is one of the most widespread of them. One of the
drawbacks of the FSMs is that they can be very complex when the number of states beginsto grow. To
prevent this we used Hierarchical Finite State Machines (HFSMs), which are an extension to the classic
FSMs. In a HFSM (like the one shown in Figure 1), besides a set of actions, the states can contain a
complete HFSM, reducing the overall complexity and favouring its legibility [2]. Each HFSM can be
considered as an abstract, modular component, which can be used anywhere in the hierarchy. FSMs
have been used successfully in commercial games (e.g. Quake [3]), and in game editing toadls (e.g.
Simbionic [4]). Representation of behaviours using HFSM is very suitable to be used within a CBR
system. Next we describe the basic working aspects of the eCo editor, and an example of its use in the
SoccerBots simulation environment. Section 5 describes the CBR system.

© BCS Specialist Group on Artificial Intelligence

Expert Update, Volume 10, Number 2, 2010

3. TheeCoBehaviour Editor

The eCo Behaviour Editor (Figure 2) is a graphical editing tool which uses HFSMs to represent
behaviours, allowing the user to “draw” the behaviour he wants to get. It aso is able to automatically
generate the code to execute the behaviour. The editor is strongly dependant on a CBR modul e which
allows reusing behaviours previoudy edited. The design of the editor worked towards the achievement of
three objectives, namely:

e Easiness of use the user shouldn’t need any technical or architectural knowledge about the
game. Thisisachieved by the use of HFSMs as an intermediate graphic format.

e Applicability: the editor must be able to generate behaviours for different games or smulations,
regardless of its genre. To accomplish this goal, the editor can use different configuration files
(called game models) and code generators, suitable for each specific game.

e Assistance to users: this goal is met reusing previously edited behaviours, via a CBR module.
This module should be able to make approximate retrieving and adaptation of the behaviours.

In section 3.1 we describe the configuration files (game models). Section 3.2 deals with the manual
edition of behaviours.

3.1 Defining the game models

A game modd is a configuration file that describes some details of a game or a simulation environment.
The game models allow the user to use the eCo editor in different games.

Each game modd includes the information about sensors and actuators, and a set of descriptors. The
sensors and actuators are obtained from the game API. Regarding the descriptors, they are numeric or
symbolic attributes that will be used by the CBR module to describe the behaviours and retrieve them
from the case base. The descriptors are obtained through the observation of the characteristics of the
different behaviours that exist in the domain of the game and must be enough extensive and
representative to describe most of the behaviours we can come across for that particular game.

3.2 Editing behaviours, generating code and storing cases

The eCo editor provides a set of editing tools that allows the user to create behaviours from scratch or
from previoudly edited behaviours stored in disk.

Once the behaviour is complete, it is possible to use the code generation tool to generate the source code
corresponding to the behaviour. This tool uses the structure of the state machine together with the
information in the game model to obtain the source file. As the game model and the source file required
are usually different for each game, the code generator will also be unique for each game. The saving
tool also allows the user to store the behaviour being edited in the case base for later reusing. We have
used XML filesto store the case bases. Each case is described by an attribute-value set of descriptors:

e Attributes: numeric and symbolic parameters that describe different properties of the behaviour.
The attributes are different for each game, although similar games (e.g. games of the same
genre) will share similar attribute sets.

© BCS Specialist Group on Artificial Intelligence

21

Expert Update, Volume 10, Number 2, 2010

]
Base de casos: ownerilis documeniosie Co\Bases de casostSocrerhols.hceml & Descripeitn Eapacio ey
Propiedadas de la hase de casos ramnporta miento de portero que se manhene cere s de la pofens | =
Hmeno e regisiros 21 —
Consulta # | Comporfamiemos Interseccion-Union |
D [
Buregador: |I.|eura arfmeética | v - -
Cubriir porteria o | hineuear
| Atributos Distancia normalizada | = B uSar portern
I'i Porle o
(FITERD | MLCROD
Centro L
Defe 4 <|
ned —I Ir & centro =
Mviliad |2 AYANZAT A POreria —
- Blogueador -
| Fegistros @ devoher
Mimero de registros: |5
Cancekar AL

Figure 3. Functionality based queries editor

o Description: textual description of the behaviour. It serves a double purpose: the user can use it
to fine tune the description given by the numeric and symbolic attributes, and it is shown to the
user during theretrieval phase, so he can select the most appropriate case.

o Enclosed behaviours: specifies which behaviours are hierarchically subordinated. This allows
the user to retrieve behaviours which include a specific set of sub-behaviours or actuators.

4. Soccer Bots Example

The behaviour editor described in Section 3, and the CBR system that we are describing in section 5, are
independent of any specific game. However, for the sake of an easier exposition we are explaining the
basic ideas using a simple game. SoccerBots is a smulation environment developed by Tucker Balch,
where two teams play in a soccer match. Simulation time, behaviour of robots, colours, size of field, and
many other features are configured from atext file. Basically, rules are similar to those from Robocup.

Thefirst step in using eCo to generate behaviours for the SoccerBots environment is to define the game
moded with the information about sensors, actuators and CBR descriptors of the SoccerBots simulation
environment. In the SoccerBots APl we can find sensors like getBal 1 X, which checks the X, position
of the ball, and actuators (i.e. actions that robots can take) like setSteerHeading(int), which
changes the direction the robot is facing.

As we stated before, the descriptors are obtained through the observation of the characteristics of the
different possible behaviours. We used four numeric parameters to describe SoccerBots behaviours:

= Mohility: ability to move all over the playfield.
= Attack: ability of the robot to play as an attacker.

= Defence: ability of the robot to play as a defender.
= Goalkeeper: ability of the robot to cover the goal.

© BCS Specialist Group on Artificial Intelligence

22

Expert Update, Volume 10, Number 2, 2010 23

5. TheCBR system

The CBR system takes advantage of the modularity and reuse properties of the behaviours; it assists the
user in the reuse of behaviours by allowing her to query a case base. Each case of the case base
represents a behaviour. By means of these queries, the user can make an approximate retrieval of
behaviours previoudly edited, which will have similar characteristics. The retrieved behaviours can be
reused, modified and combined to get the required behaviours.

Initially, the case base is empty, so all the editing has to be done via the manual editing (graphic) tools.
Once there are enough cases in the case base, new behaviours can be constructed by retrieving and
adapting the stored ones.

There are two kinds of queries: functionality based queries and structure based queries. In the former,
the user provides a set of parameters to specify the desired functionality for the retrieved behaviour. In
the latter, a behaviour is retrieved, whose composition of nodes and edges is similar to the one specified
by the query. In the current version of the editor, only functionally based retrieval is possible.

5.1 Functionality based retrieval

The most common usage of the CBR system is that the user wants to obtain a behaviour similar to query
in terms of its functionality. The functionality is expressed by a set of parameters, which can be any (or
all) of the descriptors of the cases presented in section 3.2 (i.e. the attributes, the textual description and
the enclosed behaviours). The parameters that form the query are used to describe the behaviour, and are
closely related to the game model. The more differences exist between two games, the more different the
associated behaviours are and, hence, the parameters used to describe them. The eCo editor provides a
query form, showed in Figure 3, for the users to enter the parameters of the query.

To obtain the global similarity value between the cases and the query, the similarity of the numeric and
symbolic attributes is aggregated with the similarity due to the textual description of each behaviour.
The user can select the most appropriate operator to combine them in the query form. Some examples of
operators could be the arithmetic (used in this example) and the geometric mean or the maximum.
Figure 3 shows an example query for the SoccerBots environment with the following parameters:

Goalkeeper | 1 Attack 2 | Description Goalkeeper behaviour that stays near the goal

Mohility 4 Defence | 0 | Enclosed behaviours | Block

5.2 Descriptor based similarity

Using the aforementioned form the user can enter the query descriptor values and select the similarity
measure used to compare them to the ones in the cases of the case base. To obtain the
similarity value between two descriptors, we use the normalized difference value.

In the following table we show an example of the calculus of the similarity measure for the query in
Figure 3 and a hypothetical case:

Descriptor Range | Query | Case | Similarity
Goal keeper [0, 1] 1 1 1
Mobility [0, 5] 4 2 0.6

© BCS Specialist Group on Artificial Intelligence

Expert Update, Volume 10, Number 2, 2010

Attack [0, 5] 2 3 0.8
Defence [0, 5] 0 5 0

5.3 Textual based smilarity

Description of behaviours by means of a detailed vector of descriptors can be cumbersome and difficult.
It would result in excessively long descriptions. Furthermore, it is difficult to identify all them. However
is useful to have this descriptors as indexes to filter and select cases.

To make the querying process easier, the user can use a textual description to fine tune the query by
including in it characteristics not considered by the attributes. For instance, in the example, the user is
requesting a behaviour that stays near the goal. There is no specific descriptor in the game moddl, asitis
not relevant for most of the behaviours. Instead, the textual description is used. In the current version,
we use the vector space model [5] to compute the similarity measure between the text descriptions.

6. Integration with other games

JV2M [6] is a third-person action game conceived to teach the operation of the Java Virtual Machine
(IVM). The game takes place in a space station, which acts as a metaphor of the VM. The devel opment
of VM is currently in progress and the set of sensors and actuatorsis not defined, so we had to sketch a
sensory model, based in the model of the game FarCry.

Neverwinter Nights is a role playing computer game that takes place in the Dungeons & Dragons
universe. It includes the Aurora Toolset, which allows scripting the NPC's behaviours. To carry out the
integration, we have used RCEI (Remote Controlled Environments Interface), a protocol conceived to
communicate a virtual environment with aremote controller application, via ASCI| sockets.

Finally, we tested the editor with an AIBO pet, a multipurpose robotic pet. The code controlling the
AIBO was built over the library URBI (Universa Rea-time Behaviour Interface), which alows
controlling the robot remotely, via a wirel ess connection.

In summary, we have tested the integration in environments with very different nature (a sport
simulator, a role playing game, an action game and a real life multipurpose robot) and with different
integrating characteristics. For instance, while in VM we define the set of sensors and actuators, it is
fixed for the other environments;, while Neverwinter Nights is highly event-oriented, the rest of the
environments are basically reactive systems.

7. Conclusions and Future Work

In this paper we have described an ongoing work using Case Based Reasoning (CBR) to design
intelligent behaviours in videogames. We have developed a graphical editor based on hierarchical state
machines that includes a CBR module to retrieve and reuse stored behaviours. One of the main
advantages of our approach is that the editor and the CBR module are generic and reusable for different
games. We have shown the applicability in a soccer simulator environment (SoccerBots) and we are
working in applying our editor to JV2M, a third-person action game conceived to teach the operation of
the Java Virtual Machine, that is currently being devel oped by our research group.

© BCS Specialist Group on Artificial Intelligence

24

Expert Update, Volume 10, Number 2, 2010

The eCo behaviour editor is easy to use and offers a friendly interface based on a well known technique
typically used to represent behaviours: HFSMs. The editor assists the user in the definition of new
behaviours through a CBR modul e that retrieves previously stored behaviours.

We have described the current state of the work but there are many open lines of work. We have finished
the graphical editor, defined the structure of the cases and the game models, and we have been working
on case representation, storage and similarity based retrieval. Current lines of work are structure based
retrieval, more sophisticated similarity measures, automatic reuse of behaviours and learning.

The use of hiecharchical state machines offers many possibilities to reuse and combine pieces of
behaviours within other, more complex, ones. We are working on the definition of an ontology on game
genres to be able to reuse behaviours, vocabulary, sets of sensors and actuators and even game models
between different games of the same genre.

There exist numerous techniques, besides HFSMs, to represent behaviours, like rule based systems, or
HTNSs, for instance. One of the opened investigation linesis the study of the pros and cons of each one of
them and the possibility of combining some of them to create the behaviours

In the current version, the learning of the CBR system is totally user guided: the user indicates which
cases must be stored in the case base and also introduce the values for the descriptors. The set of values
for each descriptor is a very subjective matter, so it would be a good idea to automatize this process, or,
if it isnot possible, make the system suggest val ues using machine learning approaches.

Besides the functionality based queries, presented in this paper, we are working on queries based on the
structure of nodes and edges of the state machine that define the behaviour. We are studying about graph
similarity measures, like the ones presented in [7], the restrictions they involve (for instance, in the case
representation), and the applicable adaptation techniques.

The CBR techniques presented in this paper can also be used in runtime, to retrieve behaviours based in
the defined attributes and the state of the game or simulation environment. Thisis another open research
linethat is currently being developed [8].

8. References

[1] Michad Bowling, Johannes Firnkranz, Thore Graepd, and Ron Musick. Machine learning and
games. Mach Learn, 63:211-215, 2006.

[2] A. Girault, B. Lee, and E.A. Lee. Hierarchical finite state machines with multiple concurrency
models. |EEE Transactions on Computer-Aided Design, 18(6):742—760, June 1999.

[3] Jason Brownlee. Finite State Machines. Al Depot. Available from
http://ai -depot.com/FiniteStateM achines/FSM .html (accessed September 18, 2007)

[4] Danid Fu and Ryan Houlette. Putting Al in entertainment: An Al authoring tool for smulation
and games. |EEE Intdligent Systems, 17(4):81-84, 2002.

[5] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduction to
Information Retrieval. Cambridge University Press, 2007.

[6] Pedro Pablo Gémez-Martin, Marco Antonio Gomez-Martin, and Pedro Antonio Gonzélez-
Calero. Javy: Virtua Environment for Case-Based Teaching of Java Virtual Machine. LNAI
Volume 2773, subseries of LNCS, pages 906-913. Springer Berlin / Heidelberg, 2003.

© BCS Specialist Group on Artificial Intelligence

25

Expert Update, Volume 10, Number 2, 2010

[7] Gonzalo Flérez Puga, Maria Belén Diaz Agudo, Pedro Antonio Gonzélez Calero. “Experience
Based Design Of Behaviours In Videogames®. Advances in Case Based Reasoning 5239. 180—
194. Springer. Dresde, 2008.

[8] Gonzalo Flérez Puga, Marco Gomez Martin, Belén Diaz Agudo, Pedro A. Gonzédlez Calero.
“Dynamic Expansion of Behaviour Trees’. Proceedings of the 4™ AlIDE Conference. 36-41.
AAAI Press. Stanford, 2008.

© BCS Specialist Group on Artificial Intelligence

26

