
Semiautomatic edition of behaviours in videogames *

Gonzalo Flórez-Puga and Belén Díaz-Agudo
Dep. Ingeniería del Software e Inteligencia Artificial

Universidad Complutense de Madrid, Spain
email: gflorez@fdi.ucm.es, belend@sip.ucm.es

Abstract

The edition of intelligent behaviours in games is not an easy task. Amongst other
activities, it implies identifying the entities which must behave intelligently, and what kind
of behaviours they must show without being too predictable; designing and integrating
these new behaviours with the virtual environment, in terms of perception and actuation
over the environment, and implementing them. In this paper we present an ongoing work
using Case Based Reasoning (CBR) to design intelligent behaviours in videogames. We
have developed a graphical editor based on hierarchical state machines that includes a
CBR module to retrieve and reuse stored behaviours. The editor and the CBR module are
generic and reusable for different games. We have tested our module on a soccer
simulation environment (SoccerBots) to control the behaviour of the soccer players.

Keyword: Intelligent Agents, Behaviours in Games, State Machines, CBR

1. Introduction
The aim of almost any game is to provide some amusement to the player. This task can be performed in
several ways. In the particular case of computer games, besides a good story or spectacular graphics, the
game must be a real challenge for the player. An appropriate method for achieving this is by providing
the opponents (and the allies) of the player with intelligence [1].

The edition of intelligent behaviours in games or simulation environments is a difficult task. Amongst
other activities, it implies identifying the entities which must behave intelligently, and what kind of
behaviours they must show (e.g. helping, aggressive, elusive), designing and implementing them,
integrating them in the game and testing.

Designing new behaviours could be greatly benefited from two features that are common in most of
nowadays videogames. First of all, modularity in behaviours. That means that complex behaviours can
be decomposed into simpler ones, that are somehow combined. Second, and related with the former,
simpler behaviours tend to recur within complex behaviours of the same game, or even in different
games of the same genre. Both features are useful to build new complex behaviours based on simple
behaviours as the building blocks that can be reused.

In the ongoing work described in this paper we are developing a graphical behaviour editor that is able
to store, index and reuse behaviours previously designed. Our editor (eCo) is generic and applicable to

* Supported by the Spanish Committee of Science & Technology (TIN2006-15140-C03-02)

Expert Update, Volume 10, Number 2, 2010 18

© BCS Specialist Group on Artificial Intelligence

different games, as long as it is configured by a game model file. The underlying technologies of eCo are
Hierarchical Finite State Machines (HFSMs) [2] and Case Based Reasoning (CBR).

HFSMs are appropriate and useful tools to graphically represent behaviours in games, facilitating the
modular decomposition of complex behaviours into simpler ones and the reuse of simple behaviours.
The eCo behaviour editor provides a graphical interface which allows the user to create or modify
behaviours just by “drawing” them. On the other hand, by means of a CBR-based module, the user can
make approximate searches against a case base of previously edited behaviours. Both technologies work
tightly integrated. Initially, the case base is empty, so all the editing has to be done via the manual
editing (graphic) tools. Once there are enough cases in the case base, new behaviours can be constructed
by retrieving and adapting the stored ones.

There exist several tools oriented towards the edition of finite state machines. Most of them are general
purpose state machine editors that don’t allow the use of HFSMs, nor facilitates the reusing. Regarding
game editors, most of them are only applicable to one game or game engina (e.g. Valve Hammer
Editor). Besides, the vast majority only allow map edition. The few that allow editing the behaviours, are
usually script based.

Finally, there exist some tools like BrainFrame and its later version, Simbionic, which are game oriented
finite state machine editors. These editors allow the specification of the set of sensors and actuators for
any game. There are two crucial differences wtih our approach. First of all, the Simbionic editor doesn’t
offer any assistance for reusing the behaviours, like the CBR approximate search engine integrated into
the eCo editor. And second, to integrate a behaviour edited with the Simbionic editor with a game, it is
mandatory to integrate the Simbionic runtime engine with the game.

In section 2 we introduce some general ideas on behaviour edition. In section 3 we present the eCo
behaviour editor, and in section 4 we show a small example of application of the editor to a simulation
environment: SoccerBots. Section 5 describes the CBR module integrated in the editor. As the editor and

Figure 1. Example of HFSM

Expert Update, Volume 10, Number 2, 2010 19

© BCS Specialist Group on Artificial Intelligence

the CBR module are reusable through different environments, in section 6 we outline the integration of
the editor with different games and simulation environments. Finally, in section 7 and 8, we present
related work, future goals and conclusions.

2. Behaviour editing in simulation environments
Each behaviour is typically defined by means of a set of actions or reactions performed by an entity,
usually in relation with its environment. In a computer game or simulation, each entity gathers
information about its environment using a set of sensors, which could be compared to the senses of the
living beings. Depending on this information, the entity performs certain actions, using a set of
actuators. In general, is different for each game or simulation environment, although there will be
similarities between games of the same genre. For instance, commonly used sensors in a first-person-
shooter (FPS) game could be the position, the health or the visibility of other entities. Regarding the
actuators, the entity can shoot, look at or go to a place, talk to other entities, among others.

There are two properties, shown by game behaviours, which have been of critical importance for the
development of the editor prototype: modularity (complex behaviours are usually composed of simpler
behaviours) and reuse (simpler behaviours tend to recur in complex behaviours).

Several suitable techniques exist for the representation of behaviours. Due to its expressive power and
simplicity, the Finite State Machines (FSMs) is one of the most widespread of them. One of the
drawbacks of the FSMs is that they can be very complex when the number of states begins to grow. To
prevent this we used Hierarchical Finite State Machines (HFSMs), which are an extension to the classic
FSMs. In a HFSM (like the one shown in Figure 1), besides a set of actions, the states can contain a
complete HFSM, reducing the overall complexity and favouring its legibility [2]. Each HFSM can be
considered as an abstract, modular component, which can be used anywhere in the hierarchy. FSMs
have been used successfully in commercial games (e.g. Quake [3]), and in game editing tools (e.g.
Simbionic [4]). Representation of behaviours using HFSM is very suitable to be used within a CBR
system. Next we describe the basic working aspects of the eCo editor, and an example of its use in the
SoccerBots simulation environment. Section 5 describes the CBR system.

Figure 2. The eCo behaviour editor

Expert Update, Volume 10, Number 2, 2010 20

© BCS Specialist Group on Artificial Intelligence

3. The eCo Behaviour Editor
The eCo Behaviour Editor (Figure 2) is a graphical editing tool which uses HFSMs to represent
behaviours, allowing the user to “draw” the behaviour he wants to get. It also is able to automatically
generate the code to execute the behaviour. The editor is strongly dependant on a CBR module which
allows reusing behaviours previously edited. The design of the editor worked towards the achievement of
three objectives, namely:

• Easiness of use: the user shouldn’t need any technical or architectural knowledge about the
game. This is achieved by the use of HFSMs as an intermediate graphic format.

• Applicability: the editor must be able to generate behaviours for different games or simulations,
regardless of its genre. To accomplish this goal, the editor can use different configuration files
(called game models) and code generators, suitable for each specific game.

• Assistance to users: this goal is met reusing previously edited behaviours, via a CBR module.
This module should be able to make approximate retrieving and adaptation of the behaviours.

In section 3.1 we describe the configuration files (game models). Section 3.2 deals with the manual
edition of behaviours.

3.1 Defining the game models
A game model is a configuration file that describes some details of a game or a simulation environment.
The game models allow the user to use the eCo editor in different games.

Each game model includes the information about sensors and actuators, and a set of descriptors. The
sensors and actuators are obtained from the game API. Regarding the descriptors, they are numeric or
symbolic attributes that will be used by the CBR module to describe the behaviours and retrieve them
from the case base. The descriptors are obtained through the observation of the characteristics of the
different behaviours that exist in the domain of the game and must be enough extensive and
representative to describe most of the behaviours we can come across for that particular game.

3.2 Editing behaviours, generating code and storing cases
The eCo editor provides a set of editing tools that allows the user to create behaviours from scratch or
from previously edited behaviours stored in disk.

Once the behaviour is complete, it is possible to use the code generation tool to generate the source code
corresponding to the behaviour. This tool uses the structure of the state machine together with the
information in the game model to obtain the source file. As the game model and the source file required
are usually different for each game, the code generator will also be unique for each game. The saving
tool also allows the user to store the behaviour being edited in the case base for later reusing. We have
used XML files to store the case bases. Each case is described by an attribute-value set of descriptors:

• Attributes: numeric and symbolic parameters that describe different properties of the behaviour.
The attributes are different for each game, although similar games (e.g. games of the same
genre) will share similar attribute sets.

Expert Update, Volume 10, Number 2, 2010 21

© BCS Specialist Group on Artificial Intelligence

• Description: textual description of the behaviour. It serves a double purpose: the user can use it
to fine tune the description given by the numeric and symbolic attributes, and it is shown to the
user during the retrieval phase, so he can select the most appropriate case.

• Enclosed behaviours: specifies which behaviours are hierarchically subordinated. This allows
the user to retrieve behaviours which include a specific set of sub-behaviours or actuators.

4. SoccerBots Example
The behaviour editor described in Section 3, and the CBR system that we are describing in section 5, are
independent of any specific game. However, for the sake of an easier exposition we are explaining the
basic ideas using a simple game. SoccerBots is a simulation environment developed by Tucker Balch,
where two teams play in a soccer match. Simulation time, behaviour of robots, colours, size of field, and
many other features are configured from a text file. Basically, rules are similar to those from Robocup.

The first step in using eCo to generate behaviours for the SoccerBots environment is to define the game
model with the information about sensors, actuators and CBR descriptors of the SoccerBots simulation
environment. In the SoccerBots API we can find sensors like getBallX, which checks the X, position
of the ball, and actuators (i.e. actions that robots can take) like setSteerHeading(int), which
changes the direction the robot is facing.

As we stated before, the descriptors are obtained through the observation of the characteristics of the
different possible behaviours. We used four numeric parameters to describe SoccerBots behaviours:

 Mobility: ability to move all over the playfield.
 Attack: ability of the robot to play as an attacker.
 Defence: ability of the robot to play as a defender.
 Goalkeeper: ability of the robot to cover the goal.

Figure 3. Functionality based queries editor

Expert Update, Volume 10, Number 2, 2010 22

© BCS Specialist Group on Artificial Intelligence

5. The CBR system
The CBR system takes advantage of the modularity and reuse properties of the behaviours; it assists the
user in the reuse of behaviours by allowing her to query a case base. Each case of the case base
represents a behaviour. By means of these queries, the user can make an approximate retrieval of
behaviours previously edited, which will have similar characteristics. The retrieved behaviours can be
reused, modified and combined to get the required behaviours.

Initially, the case base is empty, so all the editing has to be done via the manual editing (graphic) tools.
Once there are enough cases in the case base, new behaviours can be constructed by retrieving and
adapting the stored ones.

There are two kinds of queries: functionality based queries and structure based queries. In the former,
the user provides a set of parameters to specify the desired functionality for the retrieved behaviour. In
the latter, a behaviour is retrieved, whose composition of nodes and edges is similar to the one specified
by the query. In the current version of the editor, only functionally based retrieval is possible.

5.1 Functionality based retrieval
The most common usage of the CBR system is that the user wants to obtain a behaviour similar to query
in terms of its functionality. The functionality is expressed by a set of parameters, which can be any (or
all) of the descriptors of the cases presented in section 3.2 (i.e. the attributes, the textual description and
the enclosed behaviours). The parameters that form the query are used to describe the behaviour, and are
closely related to the game model. The more differences exist between two games, the more different the
associated behaviours are and, hence, the parameters used to describe them. The eCo editor provides a
query form, showed in Figure 3, for the users to enter the parameters of the query.

To obtain the global similarity value between the cases and the query, the similarity of the numeric and
symbolic attributes is aggregated with the similarity due to the textual description of each behaviour.
The user can select the most appropriate operator to combine them in the query form. Some examples of
operators could be the arithmetic (used in this example) and the geometric mean or the maximum.
Figure 3 shows an example query for the SoccerBots environment with the following parameters:

Goalkeeper 1 Attack 2 Description Goalkeeper behaviour that stays near the goal

Mobility 4 Defence 0 Enclosed behaviours Block

5.2 Descriptor based similarity
Using the aforementioned form the user can enter the query descriptor values and select the similarity
measure used to compare them to the ones in the cases of the case base. To obtain the
similarity value between two descriptors, we use the normalized difference value.

In the following table we show an example of the calculus of the similarity measure for the query in
Figure 3 and a hypothetical case:

Descriptor Range Query Case Similarity

Goalkeeper [0, 1] 1 1 1

Mobility [0, 5] 4 2 0.6

Expert Update, Volume 10, Number 2, 2010 23

© BCS Specialist Group on Artificial Intelligence

Attack [0, 5] 2 3 0.8

Defence [0, 5] 0 5 0

5.3 Textual based similarity
Description of behaviours by means of a detailed vector of descriptors can be cumbersome and difficult.
It would result in excessively long descriptions. Furthermore, it is difficult to identify all them. However
is useful to have this descriptors as indexes to filter and select cases.

To make the querying process easier, the user can use a textual description to fine tune the query by
including in it characteristics not considered by the attributes. For instance, in the example, the user is
requesting a behaviour that stays near the goal. There is no specific descriptor in the game model, as it is
not relevant for most of the behaviours. Instead, the textual description is used. In the current version,
we use the vector space model [5] to compute the similarity measure between the text descriptions.

6. Integration with other games
JV2M [6] is a third-person action game conceived to teach the operation of the Java Virtual Machine
(JVM). The game takes place in a space station, which acts as a metaphor of the JVM. The development
of JV2M is currently in progress and the set of sensors and actuators is not defined, so we had to sketch a
sensory model, based in the model of the game FarCry.

Neverwinter Nights is a role playing computer game that takes place in the Dungeons & Dragons
universe. It includes the Aurora Toolset, which allows scripting the NPC’s behaviours. To carry out the
integration, we have used RCEI (Remote Controlled Environments Interface), a protocol conceived to
communicate a virtual environment with a remote controller application, via ASCII sockets.

Finally, we tested the editor with an AIBO pet, a multipurpose robotic pet. The code controlling the
AIBO was built over the library URBI (Universal Real-time Behaviour Interface), which allows
controlling the robot remotely, via a wireless connection.

In summary, we have tested the integration in environments with very different nature (a sport
simulator, a role playing game, an action game and a real life multipurpose robot) and with different
integrating characteristics. For instance, while in JV2M we define the set of sensors and actuators, it is
fixed for the other environments; while Neverwinter Nights is highly event-oriented, the rest of the
environments are basically reactive systems.

7. Conclusions and Future Work
In this paper we have described an ongoing work using Case Based Reasoning (CBR) to design
intelligent behaviours in videogames. We have developed a graphical editor based on hierarchical state
machines that includes a CBR module to retrieve and reuse stored behaviours. One of the main
advantages of our approach is that the editor and the CBR module are generic and reusable for different
games. We have shown the applicability in a soccer simulator environment (SoccerBots) and we are
working in applying our editor to JV2M, a third-person action game conceived to teach the operation of
the Java Virtual Machine, that is currently being developed by our research group.

Expert Update, Volume 10, Number 2, 2010 24

© BCS Specialist Group on Artificial Intelligence

The eCo behaviour editor is easy to use and offers a friendly interface based on a well known technique
typically used to represent behaviours: HFSMs. The editor assists the user in the definition of new
behaviours through a CBR module that retrieves previously stored behaviours.

We have described the current state of the work but there are many open lines of work. We have finished
the graphical editor, defined the structure of the cases and the game models, and we have been working
on case representation, storage and similarity based retrieval. Current lines of work are structure based
retrieval, more sophisticated similarity measures, automatic reuse of behaviours and learning.

The use of hiecharchical state machines offers many possibilities to reuse and combine pieces of
behaviours within other, more complex, ones. We are working on the definition of an ontology on game
genres to be able to reuse behaviours, vocabulary, sets of sensors and actuators and even game models
between different games of the same genre.

There exist numerous techniques, besides HFSMs, to represent behaviours, like rule based systems, or
HTNs, for instance. One of the opened investigation lines is the study of the pros and cons of each one of
them and the possibility of combining some of them to create the behaviours

In the current version, the learning of the CBR system is totally user guided: the user indicates which
cases must be stored in the case base and also introduce the values for the descriptors. The set of values
for each descriptor is a very subjective matter, so it would be a good idea to automatize this process, or,
if it is not possible, make the system suggest values using machine learning approaches.

Besides the functionality based queries, presented in this paper, we are working on queries based on the
structure of nodes and edges of the state machine that define the behaviour. We are studying about graph
similarity measures, like the ones presented in [7], the restrictions they involve (for instance, in the case
representation), and the applicable adaptation techniques.

The CBR techniques presented in this paper can also be used in runtime, to retrieve behaviours based in
the defined attributes and the state of the game or simulation environment. This is another open research
line that is currently being developed [8].

8. References
[1] Michael Bowling, Johannes Fürnkranz, Thore Graepel, and Ron Musick. Machine learning and

games. Mach Learn, 63:211–215, 2006.

[2] A. Girault, B. Lee, and E.A. Lee. Hierarchical finite state machines with multiple concurrency
models. IEEE Transactions on Computer-Aided Design, 18(6):742–760, June 1999.

[3] Jason Brownlee. Finite State Machines. AI Depot. Available from
http://ai-depot.com/FiniteStateMachines/FSM.html (accessed September 18, 2007)

[4] Daniel Fu and Ryan Houlette. Putting AI in entertainment: An AI authoring tool for simulation
and games. IEEE Intelligent Systems, 17(4):81–84, 2002.

[5] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2007.

[6] Pedro Pablo Gómez-Martín, Marco Antonio Gómez-Martín, and Pedro Antonio González-
Calero. Javy: Virtual Environment for Case-Based Teaching of Java Virtual Machine. LNAI
Volume 2773, subseries of LNCS, pages 906–913. Springer Berlin / Heidelberg, 2003.

Expert Update, Volume 10, Number 2, 2010 25

© BCS Specialist Group on Artificial Intelligence

[7] Gonzalo Flórez Puga, María Belén Díaz Agudo, Pedro Antonio González Calero. “Experience
Based Design Of Behaviours In Videogames”. Advances in Case Based Reasoning 5239. 180–
194. Springer. Dresde, 2008.

[8] Gonzalo Flórez Puga, Marco Gómez Martín, Belén Díaz Agudo, Pedro A. González Calero.
“Dynamic Expansion of Behaviour Trees”. Proceedings of the 4th AIIDE Conference. 36–41.
AAAI Press. Stanford, 2008.

Expert Update, Volume 10, Number 2, 2010 26

© BCS Specialist Group on Artificial Intelligence

