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Abstract. This paper aims to answer the following  research question: “Can the standard CBR models be generalised to a 

unified (problem : solution) space to allow flexible query modes?“  In the standard Case-Based Reasoning (CBR) model, a 

case is represented as a <problem, solution> pair. The problem space and solution space are treated as separate, and nearest 

neighbours are retrieved using a metric defined on the problem space. The standard method applies to domains where the 

similarity assumption is valid: that cases which are near in the problem space are also near in the solution space. This presumes 

that a metric is also defined in the solution space. In this paper a generalisation of the standard CBR retrieval method, which 

integrates solution space and retrieval space into a single query space is proposed. The retrieval method is proposed by means 

of the concept of nearest neighbours to a constraint region. It is shown that the standard CBR retrieval is a special case of this 

more general model. The advantages of the general model are explained in connection with its more general query modes. 

Whereas the standard model is only queryable by specification of problem “inputs”, the more general model is capable of 

retrieving general queries on the unified problem-solution space. The advantages of this flexible query form are explained in 

the paper, by means of a variety of illustrative examples.  

1. INTRODUCTION 

The motivation for this paper is to give a basis for enhancing the usability of CBR tools. The standard CBR tool 
requires a user to specify given inputs (from the “problem” space), and retrieve near cases which present outputs 
(from the “solution space). However, in many cases the user would like to query the case base in a more flexible 
way. Woon et al. (2003b, 2003c) cite examples where the user might want to specify some output values as well 
as target inputs, as when an engineer wants to find input parameters for a desired output. Also, it may be desirable 
to add constraints to the CBR system, according to circumstances. For example, a design engineer might want to 
specify that some design components are unavailable at the time. In the example of Section 5.2 below, a constraint 
is added to the CBR query, to represent an obstacle in the path of a projectile.  
 
The idea of this paper is to treat cases just as data points in the unified space (problem + solution space). In this 
manner, the CBR retrieval mechanism can take the general flexible form of a database predicate over the unified 
space, so that the user can query on any subset of the unified space (problem or solution variables). In addition, 
we show that derived attributes representing constraint conditions can also be added to the predicate. By this 
means retrieved case can approximate solutions under constraints, capable of further adaptation, for example 
using CSP methods [Marling et al., 2002; Purvis and Pu, 1996; Faltings, 1996].  
 

In order to generalise the CBR method to the unified space, we propose the definition of nearest neighbour to a 
region (really just any subset of the space). Query predicates on the space correspond to such regions, and nearest 
neighbours in the case base are defined as those nearest to the predicated region. By nearest here, we take distance 
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to the nearest point in the region. With this definition, we show that the standard CBR nearest neighbour method 
is a special case. 
In this section we have introduced the main idea of the method. In the next section we propose the theoretical 
basis for the method. In Section 3.2 we show that the standard nearest neighbour method is a special case of the 
unified general method. In Section 4 we give an illustrative example of the method as applied to a simple 
“inverse” problem. In Section 5 we show how it can deal flexibly with “mixed” target constraints over both 
problem and solution spaces. In Section 7 we give an outline of a real practical example of a design assistant to 
the pneumatic conveyor. 

2. GENERALISATION OF NEAREST NEIGHBOUR RETRIEVAL OVER 
THE N-DIMENSIONAL UNIFIED SPACE 

2.1 Notation 

In this section, we present the basis for retrieval of nearest neighbours to a constrained region over a unified n-
dimensional space. We take the space to be formed from n one-dimensional domains: Di  , i =  1 , … , n  , each 
with a distance function defined. If  a and b ∈ Di, we take |a-b|  to be the distance between elements a and b. We 
let D denote the n-dimensional space  D1 ⊗  D2 ⊗ D3 ⊗ … Dn , and let ( z1 , z2 , ... , zn  ) represent a point in D, 
where z1 ∈ D1 , z2 ∈ D2 , … , and etc. 
If  a, b ∈ D we assume  d(a,b)  represents a distance function defined over D, such that  

d(a,b) > 0, ∀  a, b E(3-1) 

d(a,a) = 0, ∀  a E(3-2) 

d(a,b) = d(b,a), ∀  a, b E(3-3) 

d(a,b) + d(b,c) ≥  d(a,c), ∀  a, b, c E(3-4) 

   

NB. The existence of a metric d on the unified space which satisfies E(3-4) implies that the usual similarity 
assumption [Watson, 1997; Kolodner, 1993] holds true. 
Normally we take d to be the pseudo-Euclidean metric:  

d(a,b) = [(w1 | a1 – b1 |2 +w2 | a2-b2 |2 +…+ wn | an – bn |2)/ ∑wi=1...n] 1/2 

In many cases a user needs to specify a region R and we need to find its nearest neighbours within a given case 
base C ⊂ D. We first extend the definition of metric to include the distance between a point and a region. Let R ⊂ 
D be a region in the n-dimensional space. We define: 

d(a,R) = min r∈R d(a,r) E(3-5) 

Now we use the definition E(3-1), applied to cases in C. For a given region R, we define the nearest neighbour as  

Arg min c ∈ C d(c,R) E(3-6) 

(Notice there is a symmetry here between R and C. Combining E(3-5) and E(3-6) we get:  

Argmin c ∈ C  min r∈R d(a,r) E(3-7) 

Expert Update, Volume 10, Number 2, 2010 61

© BCS Specialist Group on Artificial Intelligence



2.2 The Standard CBR Model as a Special Case  

The above analysis treats all n dimensions of the unified space equally. However, in standard case base analysis, it 
is usual to divide the space into two parts: the problem space, which is completely known and specified as a target 
(x1 , x2 , …, xk), and the solution space  (y1 , y2 , …, ym) which is unknown. To apply the general theory of the 
previous section, we consider the n dimensional space (z1 , z2 , …, zn) where n = k+m and 

z1 = x1 , …, zk = xk ,  zk+1 = y1 , …,  zn = ym. 

The user specifies the target region  R  by the k constraints (see Fig. 1): 
r ∈ R iff  r1 = x1

target , r2 = x2
target ,…, rk = xk

target. 

 

 

 

 

 

 

Figure 1.   Visualisation of a target case, xtarget as a constrained region R 

If we take d() as the pseudo-Euclidean metric, then  
d(c,r)=[(w1 |c1 – r1|2 +  w2 |c2 - r2|2 +…+ wn |cn – rn|2)/ ∑wi=1...n

 ] 1/2 

For i =  k+1 …n, there is no constraint on ri, so we can chose ri =  ci, whereupon |ci-ri| =  0 for a minimum d(c,r). 
For i =  1…k, ri =  xi

target. Hence E(3-7) gives  
Argmin c ∈ C [( w1 |c1 – x1

target |2+…+ wk |ck – xk
target |2)/ ∑wi=1...n

 ] ½   

which is the standard nearest neighbour formula, relying on a distance metric defined only on the problem space.  
 
Hence we see that the generalised nearest neighbour retrieval reduces to the standard retrieval method when a 
target is available. The target is specified by means of constraints on the n-dimensional space and nearest 
neighbours are determined for this region. This justifies examining the method further. Now, it remains to 
investigate how this method behaves with other constraints. 

3. THE PROJECTILE PROBLEM: THE INVERSE PROBLEM 

The above analysis is obviously symmetric between x and y, i.e., problem and solution domain have no 
significance in this generalised approach. If the user specifies the target region  R   by the m constraints: 
 

r∈ R  iff   r1= y1
target , r2= y2

target , …, rm= ym
target. 

The problem reduces to the nearest neighbour problem with a metric defined over the y-domain.  
 

c1 

c2 y 

 R 

x 
xtarget 

Expert Update, Volume 10, Number 2, 2010 62

© BCS Specialist Group on Artificial Intelligence



To illustrate how the method works, we choose a simple projectile problem. In this problem, the projectile model 
simulates the flight of a cannonball shot over flat ground in a given time interval, T (see Fig. 2). From numerical 
modelling point of view, the direct problem consists of two inputs; v = velocity, θ = angle of gun and the model 
calculates the output: trajectory of the shot. A trajectory is represented by a set of points, i.e., (x,y) where : 
 

x = v t Cos θ 

y = v t Sin θ – 5t2 

and  t ∈ [0,T] . 

In this representation, v and θ are the problem space, and (x,y) the solution space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.   Visualisation of the trajectory of a cannonball shot over flat ground 

 
To illustrate the inverse problem, we take an example where a gunner tries to hit the target at x=450m on the level 
ground. The problem is this: we want to decide on the right angle of gun, θ and the initial velocity, v. Here we 
assume that there are various guns, each with known muzzle velocity. We have no means to approach such an 
inverse problem with standard CBR models where problem space and solution space are treated as separate since 
we do not know the “inputs” in the problem space, only knowing that the “output” = 450m. Hence we can take R 
to be the space of points r(r1, r2, r3) where r1 =  theta, r2 =  v, r3 =  the x value of the point where the cannon ball 
hits the level ground. R is the region subject to the constraint: r3 = 450m .  
 

In the generalised approach, each case in the case base is represented by c(c1, c2, c3 ), and the metric is: 
 

d(c,r) = [( w1 |c1 – r1|2 +  w2 |c2 - r2|2 +  w3 |c3 – r3|2))/ ∑wi=1...n
 ] 1/2. 

As there are no constraints on r1 and r2  , the minimum d(c,r) will occur when r1 = c1, so that |c1-r1| = 0 .  
 
Similarly, |c2-r2| = 0 .  Hence E(3-7) reduces to: 
 

Arg min c ∈ C   [ w3  | c3 – 450 |2/ w3] 1/2= Arg min c ∈ C    | c3 – 450 | 

and we are searching for cases with  c3  near to 450m. Table 1 shows example of cases, i.e., c(c1, c2, c3 ), generated 
in case base with theta ∈ (0 , π/2] and velocity ∈ [70 , 100]: 
 

  Θ  theta 
x 

r3 

r4 

y 

450     200 0 

50 

v  
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Case ID c1 c2 (m/s) c3 (m) d (c,R) 

1 0.2 100 389.4183 60.5817 

2 1.2 80 432.2964 17.7036 

3 1.0 70 445.5557 4443 

4 0.6 70 456.6992 6.6992 

5 0.4 80 459.1079 9.1079 

6 0.8 70 489.7911 39.7911 

7 1.2 90 547.1252 97.1252 

Table 1. Example cases presented in case base and the distance calculated for between each case 

and the target region R – The Inverse Problem. 

With this approach, the inverse problem can be resolved. The retrieved cases for k=3 nearest neighbours are:  
Case 3: (1, 70, 445.6), giving a near solution with muzzle velocity 70m/s and angle 1c 

Case 4: (0.6, 70, 456.7), and  
Case 5: (0.4, 80, 459.1).  
 
As case 3 gives minimum d(c,R) = 44, according to E(3-7) , the best match to the target region R is case 3.  
The above shows how the generalised approach can be used to handle an inverse problem, however, there are 
times when users may need to specify a problem over the input space and the output space. Section 5 investigates 
how the method could be used to solve such constraint problems. 

4. THE PROJECTILE PROBLEM: THE CONSTRAINT   PROBLEM 

The fact that standard CBR models restrict query only on the problem space may be a problem when users want to 
define a constraint over both the problem space and the solution space to refine the search. Comparatively, the 
generalized approach allows users to define constraints on both spaces.  

4.1 Constraint Problem I 

In this section, we show an example of “mixed” target constraints problem. For example, the gunner who tries to 
hit the target at x = 450m on the level ground may want to restrict the choice of gun with initial velocity = 80m/s. 
The target region R now involves constraints defined over the problem space (i.e., input ) and the solution space 
(i.e., outputs ):  r2 = 80 m/s  , r3 = 450m  . 
The metric is again: 

d(c,r) = [(w1 | c1 – r1|2 + w2 | c2 - r2|2 + w3 | c3 – r3|2 ))/ ∑wi=1...n] 1/2. 

As there are no constraints on r1 , the minimum d(c,r) will occur when r1 =  c1, so that |c1-r1| =  0 . Hence following 
E(3-7) reduces to  
 

Argmin c ∈ C [(w1 |c1 – r1|2 + w2 |c2 – 80|2 + w3 |c3 – 450|2)) /  ∑wi=1...n
 ] ½ 
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= Argmin c ∈ C [(w2 | c2 – 80 |2 + w3 | c3 – 450 |2) / ∑wi=1...n
 ] ½ 

Hence we are searching for cases with  c2  near to 80m/s and  c3  near to 450m. In this problem we take equal 
weights for w2 and w3 assuming that r2 and r3 are equally important. Table 2 shows example of cases, i.e., 
c(c1,c2,c3), generated in case base with theta ∈ (0 , π/2] and velocity ∈ [70,100]: 
 

Case ID c1 c2 (m/s) c3 (m) d (c,R) 

1 0.2 100 389.4183 45.1118 

2 1.2 80 432.2964 12.5183 

3 1.0 70 445.5557 7.7380 

4 0.6 70 456.6992 8.5111 

5 0.4 80 459.1079 6.4403 

6 0.8 70 489.7911 29.0115 

7 1.2 90 547.1252 69.0409 

Table 2.  Example cases presented in case base and the distance calculated for between each 
case and the target region R – Constraint Problem I. 

Using the general method, the “mixed” target constraints problem can be resolved. The retrieved cases for k=3 
nearest neighbours are:  
Case 5: (0.4, 80, 459.1), giving a near solution with muzzle velocity 80m/s and angle 0.4c 

Case 3: (1, 70, 445.6), and  
Case 4: (0.6, 70, 456.7).  
As case 5 gives minimum d(c,R) = 6.44, according to E(3-7) , the best match to the target region R is case 5. 

5.  Constraint Problem II 

In Section 6, we continue the discussion of handling constraints using the generalised approach by adding a new 
constraint to the example discussed in Section 5.1 . In this example, we add an extra constraint in the form of an 
obstacle at distance 200m that the cannon ball must clear. We suppose that the gunner tries to hit the target at x = 
450m on level ground with a choice of gun with initial velocity = 80m/s and clear the obstacle with height 50m. 
To handle this constraint, we augment the space to include a derived dimension, r4 =  the height of the cannon ball 
at the obstacle, when x = 200m.  
By adding a new constraint, the constrained region R is defined by : r2 =  80 m/s  , r3 =  450m ,  r4 >  50m , where r4 
=  the height of  the cannon ball at  the obstacle, when x = 200m. We  take 
 the distance metric on this dimension to be: 

d(a4,b4) =   |a4-50|,  a4 <=50, b4>50 

             0    ,   otherwise 

With the generalised approach we reformulate the problem so that the metric bears a penalty term w4  d2( c4, r 4) for 
cases outside the constraint region: 
 
 d(c,r) = [( w1 | c1 –  r 1|2 +  w2 | c2 -  r 2|2 +   w3 | c3 –  r 3|2  +   w4  d2 ( c4, r 4) ) / ∑wi=1...n

 ] 1/2  
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Since no constraint is defined on r1 , following E(3-7) the metric reduces to  
 

Argmin c ∈ C  [ (w1 | c1 – I1|2 +  w2 | c2 – 80 |2 +   w3 | c3 – 450 |2 +   w4 d2 ( c4, r 4) ) / ∑wi=1...n
    ]½ 

 =  Argmin c ∈ C  [(w2 | c2 – 80 |2 +   w3 | c3 – 450 |2  +   w4 d2 ( c4, r 4)) / ∑wi=1...n
  ] 1/2 

Hence we are searching for cases with c2 near to 80m/s , c3 near to 450m and c4 greater than 50m. 
In this problem, we take the weights for the constraints to be high, since we definitely want to use a gun with 
muzzle velocity 80m/s, and we cannot afford to hit the obstacle. In this example, we took w2 = 1 , w3 = 10, w4 =  
10, which is high for constrains r3 and r Table 4-3 shows example of cases, i.e., c ( c1 , c2 , c3 , c4 ) , generated in 
case base with theta ∈ (0 , π/2] and velocity ∈ [70,100]: 

 
Case ID c1 c2(m/s) c3 (m) c4 (m) d (c,R) 

1 0.2 100 389.418 19.720 46.940 

2 1.2 80 432.296 276.432 12.217 

3 1.0 70 445.556 171.665 3.7638 

4 0.6 70 456.699 76.907 5.112 

5 0.4 80 459.108 47.723 6.479 

6 0.8 70 489.791 121.840 27.545 

7 1.2 90 547.125 326.382 67.058 

Table 3. Example cases presented in case base and the distance calculated for between each case 
and the target region R – Constraint Problem II. 

Using the general method, again, the “mixed” target constraints problem can be resolved. The retrieved cases for 
k=3 nearest neighbours are:  
Case 3: (1 , 70, 445.6 , 171.7),  
giving a near solution with muzzle velocity 70m/s and angle 1c,  
Case 4: (0.6 , 70, 456.7 , 76.9 ), and  
Case 5: (0.4 , 80, 459.1 , 47.7 ).  
As case 3 gives minimum d(c,R) =  3.76 , according to E(3-7) , the best match to the target 
region R is case 3. In this case, the trajectory will clear the obstacle at a height of 171.67 m.  

6.  APPLYING THE METHOD TO THE PNEUMATIC CONVEYOR 
PROBLEM 

To examine how the method could be useful for a real problem, we present an example of used in a CBR model 
for a pneumatic conveyor problem [Chapelle et al., 2003].  
 Pneumatic conveying is an important transportation technology in conveying solid bulks in industry. 
Attrition of powders and granules during pneumatic conveying is a problem that has existed for a long time. One 
of the major industry concerns is to investigate how parameters such as air velocity, loading ratio, the angle of the 
bend and etc. affect degradation. Such knowledge is of great use in the design of conveyors.  
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Generally [Kalman, 2000], parameters affecting the attrition rate can be divided into three categories:  
• The particle strength: particle material, size and shape. 
• The operation parameters: particle velocity and particle concentration – loading ratio. 
• The pipeline and bend structure: radius of curvature, construction material, type of bend, number of 

bends. 
 In most cases, pneumatic conveyor engineers are more concerned with the set of input parameters (i.e., as 
mentioned above) that will produce a desirable size distribution of particles (see Fig. 3). 
From a designer’s point of view the problem is this: we want to decide on the right angle of bend, diameter of 
pipe, and air velocity for a given particulate, e.g., sugar or tea. We have a number of bend angles and three pipe 
diameters available. The sugar must not degrade so that there is too much dust formed (i.e., very small particles). 
There may be only low power fans available sometimes, so the air velocity may be constrained.  What is the best 
setup to use? 
 
 

 

  

 

 

 

 

Figure 3.   The schematic diagram of a sample pneumatic conveyor 

To solve these inverse or constraint problems, a CBR model is built to help engineers. The model uses the 
generalised nearest neighbour method to handle constraints in order to retrieve the best match to a target problem.  
 
 In the problem of pneumatic conveyor, the performance of the CBR model explained in this paper is 
measured against the human expert [Chapelle et al., 2003] in solving inverse problems and constraint problems in 
the pneumatic conveyor domain. Results [Knight and Woon, 2004] show that the CBR model is on average 5 
times faster than the human expert in using the numerical model directly to search for a solution. The CBR model 
provides a good solution in terms of efficiency and effectiveness. It is shown that the CBR model using this 
approach can help engineers to solve inverse and constraint problems in the pneumatic conveyor domain. 

7.  CONCLUDING REMARKS 

In this paper we have presented a generalised version of CBR model based on a unified (problem: solution) space. 
The nearest neighbour retrieval method has been re-cast as nearest neighbour to a constrained region. The region 
may be defined by means of a predicate defined on the unified space. This allows the user greater flexibility in 
specifying any query over the unified space.  
 It is also shown that the user can add constraints to the query by adding derived attributes to the predicate. 
The retrieval then searches for the nearest neighbours in the enhanced space (unified space + constraint attributes). 
Solutions will be retrieved, which satisfy or are close to the constrained region. The paper has presented a 
mathematical basis for these proposals, and shown that the standard CBR method is a special case. It illustrates 
the flexibility of query mode by means of an inverse problem, and illustrates the addition of constraints to a 
projectile problem. The details of a practical project which has utilised this approach have been presented as the 
problem of a pneumatic conveyor design. Future work is planned on the use of the method in conjunction with 
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CSP in conjunction with the Generalised Shepard Nearest Neighbour interpolation method [Knight and Woon, 
2003; Woon and Knight, 2004]. 
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